There are probably more than a million fume hoods operated in laboratories throughout the United States. Most of these fume hoods still run under more or less continuous conditions and thus consume an enormous amount of energy per year.
There seems to be a significant savings potential if the total exhausted volumes could be reduced while all safety requirements are met. Researchers have meanwhile developed and identified high-performance fume hood solutions that could facilitate a reduction of up to 75% of the consumed energy required to condition make-up air. However, most of these solutions are geared towards new construction as they require specific spatial and system design configurations. There is a lack of knowledge regarding retrofit options and their expected savings potential on energy consumption for existing laboratories. Since fume hoods interact with other systems and fulfill design requirements that are already in place, any modification will consequently impact other performance requirements within the same environment. This project set out to gain a broader understanding of direct and indirect impacts of various retrofit scenarios for individual fume hoods, their integrated function within a laboratory space, and their overall impact on energy consumption of a space.
This research project employed a long term experimental approach to measure the actual energy consumption of two different laboratory spaces, before and after retrofits. The results from measurements in the physical space were then modeled in an analytical, simulated approach to replicate the measured scenarios and consequently provide a basis for other simulation scenarios. The energy consumption of individual lab spaces was broken down by domain to disambiguate how energy is utilized in a given lab context. This approach identified the most significant contributors in terms of design requirements and their impact on actual consumption. This ultimately provided the basis for identifying the most applicable retrofit strategies.
The project showed that it is possible to reduce the energy consumption of HVAC loads for laboratory spaces up to 75% through special retrofit technologies, as demonstrated for one of the investigated laboratory spaces. However, any savings potential is highly dependent on space configuration, its actual use, and its related design context. For the second of the investigated spaces, we found several performance mandates to be conflicting with technically achievable flow rate reductions, which in turn reduced the potential energy savings to only 10%, even when considering significant additional retrofit work. The core findings of this project can be summarized as follows:
This project demonstrated that energy consumption savings of up to 75% for space conditioning can be achieved. However, the individual savings potential that can be achieved for a laboratory space depends on many factors, such as the actual climate where retrofits are installed, actual occupant and lighting schedules, and the actual space and equipment usage. Furthermore, the total savings potential is a function of load-related ventilation requirements versus safety-related ventilation requirements. These ratios can vary widely as our research has demonstrated, even within the same building context. Ultimately, there is no “one-size-fits-all” approach possible for fume hood retrofits, and each individual space configuration must be evaluated in its specific context. The IDEAL application developed as an outcome of this project can be a first step in this process and start the conversation with building owners and other stakeholders.